2024年1月

不知道为什么没有人这么总结过.

  • 食: 饮食, 能量来源.
  • 泄: 排泄, 有吃有喝有排泄, 吸收有用的排出有毒的.
  • 息: 气息, 呼吸. 但这一点绝大多数时候是无意识进行的, 不需要意识控制.
  • 温: 温度, 维持人体温度.
  • 眠: 睡眠.
  • 色: 性需求.
    呼吸因为自发自主, 空气又是免费的, 不需要成本. 所以如果讨论是否必须要去有意识付出代价获取的话, 通常可以排除. 余下食泄温眠色.
    老祖宗说食色性也, 包括了食和色. 又说衣食住行, 包括了温食眠. 又说吃喝拉撒, 包括了食泄.
    不过, 从重视程度来说, 食肯定排在第一位的, 温也就是衣可以排在第二位, 这两个都是参与社交, 并作为社交的一部分的, 而且食本身作为社交手段, 又最常用作拉进相互关系. 眠排在第三位, 它不参与社交, 而且直到现代电光源发明之前, 睡眠时长都不存在问题. 泄和色讲起来都颇为忌讳, 其中泄排在第四位, 因为虽然忌讳, 但也从未被禁止过, 而色排在最后一位, 因为不但忌讳, 而且在历史上不断地被各种花式禁止.
    这个问题我问了GPT4, 从其回答顺序和爽快程度上, 也可以看出下面的排位.

我: 请总结对人生存所需要的最基本的生理需求, 包括那几点, 每一点分别用一个汉字来概括.

GPT4: 对人生存所需要的最基本的生理需求通常可以概括为以下几点:

  1. - 人体大部分由水构成,维持身体功能必须要有足够的水分。
  2. - 获取足够的营养包括蛋白质、脂肪、碳水化合物、维生素和矿物质。
  3. - 呼吸新鲜空气来供给身体必需的氧气用于细胞的代谢活动。
  4. - 保持适宜的体温, 既不能过热也不能过冷。
  5. - 充足的睡眠对恢复体力和精神都是必要的。
    这些是人类生存最基础的生理需求。

我: 是否还遗漏了其他方面
GPT4: 我的回答中确实遗漏了其他一些基本生理需求。除了水、食、氧、温和睡之外,还应该包括:
6. - 排泄体内积累的废物和毒素,维持身体的正常功能。
7. - 避险本能,即寻求安全,躲避危险和威胁来保护自己不受伤害。
这些基本生理需求综合起来,构成了人类生存必需的条件。

我: 是否还有遗漏
GPT4: 在以上所述的基本生理需求(水、食、氧、温、睡、排)之外,可以再补充一项基本生理需求:
7. - 生物学上的性需求,涉及繁殖和种族延续。
这七项基础构成了人类生存的核心生理需求。

所以GPT4显然也是受到人类文化熏陶, 总是不肯把所有的关键点一次性说出来.

如果页面使用了shadow-root, 在shadow-root节点以下, 无法使用querySelector进行选择. 这也会导致绝大多数的页面爬虫无法爬取数据, 如chrome插件instant data scraper以及uibot的数据抓取功能. 比如微信的后台都是使用shadow-root的. 个人感觉shadow-root是iframe的一种更优雅的替代技术.

e = $('micro-app') // 选择shadowRoot节点, 可以在开发者工具中看到下面标有#shadow-root(open)的
e.shadowRoot.querySelector('your-css-selector') // 此时就可以选择了

以下代码可以运行. 意味着可以使用回调函数

Function f1(x,y)
    return x + y
end Function
Function f2(x,y)
    return x - y 
End Function
Function a(f)
    Log.Info(f(1,2))
End Function
a(f1)
a(f2)

并且函数名除了作为形参,还可以作为普通变量以及对象的值

Dim f = f2
f('from f')

dim o = {
    'f': f1
}
dim o_f = o['f']
o_f('from o_f')

Function f1(s)
    Log.Info('f1')
    Log.Info(s)
End Function

Function f2(s)
    Log.Info('f2')
    Log.Info(s)

End Function

上面的用法,意味着可以创造类似于接口的功能,使用同一接口函数抽象调用,实际实现可以不同。
另外,也可以实现类似于面向对象的开发,在一个object中除了定义变量还可以定义函数。只是在对象中的函数不能直接写在对象里,也不能匿名,需要在外面写好,在对象里赋值。
同样的,对象里的函数也不能通过o['f']()的方式调用,需要先赋值给变量,再通过变量调用。

另外,发现在函数中使用这种方法会报错,似乎和编译有关:

Function a()
  dim f = f1
  f()
End Function

Function f1()
  log.info(f1)
End Function

报错: 后端错误 unexpected symbol near ')'
这种情况只要将dim f放到全局就会正常,不知道为何,似乎是回调函数名称必须为全局变量(常量), 如下:

dim f
Function a()
  f = f1
  f()
End Function

Function f1()
  log.info(f1)
End Function

另外,始终没有找到根据字符串常量表示的函数名调用对应函数的方法。

回调的坑: 跨文件调用回调会丢失全局环境(包括全局变量)

有一个主文件为test.task, 一个作为提供函数的模块文件tools.task, 如果在主文件中调用模块文件中的函数, 并给其提供的回调函数位于主文件中, 那么此回调函数不能访问主文件中的全局变量.
调用关系: 主文件->调用模块文件的函数(主文件的回调函数名)->调用主文件回调函数->丢失主文件全局变量. 示意如下:

/* tools.task 模块文件 */
Function funcInTools(cb)
    Log.Info('funcInTools')
    gCallback = cb
    gCallback()
End Function

/* test.task 主文件 */
Import tools
Dim gCallback
Dim gLost = 11 
funcInMain(cbInMain) // 通过主文件的函数调用主文件的回调函数, 不会丢失全局变量
tools.funcInTools(cbInMain) // 通过模块文件的函数调用主文件的回调函数, 丢失全局变量

Function cbInMain() //主文件中的回调
    Log.Info(gLost)
End Function

Function funcInMain(cb)
    Log.Info('funcInMain')
    gCallback = cb
    gCallback()
End Function

运行后输出如下:

[2024-4-24 11:42:04] [INFO] 流程 test.task 开始运行
[2024-4-24 11:42:04] [INFO] test.task 第15行:funcInMain
[2024-4-24 11:42:04] [INFO] test.task 第11行:11
[2024-4-24 11:42:04] [INFO] tools.task 第7行:funcInTools
[2024-4-24 11:42:04] [INFO] test.task 第11行:null

可以看到回调函数第一次调用可以输出全局变量, 而第二次调用则不可以.
这种情况建议将全局变量通过形参传入:

/* tools.task 模块文件 */
Function funcInTools(cb, 传入变量)
    Log.Info('funcInTools')
    gCallback = cb
    gCallback(传入变量)
End Function

/* test.task 主文件 */
Import tools
Dim gCallback
Dim gLost = 11 
tools.funcInTools(cbInMain, gLost) // 通过模块文件的函数调用主文件的回调函数, 丢失全局变量

Function cbInMain(传入变量) //主文件中的回调
    Log.Info(传入变量)
End Function

python中有cpca库, 可以匹配省市区并返回. 但这个库有些老, 好多年不更新, 像深圳龙华区这些近几年升级为区的都没有. 所以需要结合正则实现.
python还有另外一个geopy库也可以实现, 但是这个库需要实时通过API读取, 还总是timeout, 所以放弃这个方案.
UiBot本来支持python扩展来解决, 但是不知为何Uibot自带的python对cpca支持有问题, 始终报错, 所以放弃, 改为Uibot调用系统命令读取打印输出的方式曲线救国.
python代码都是GPT4 Turbo写的, 自己做了小修改.
Uibot测试:

PyTools('parse_address', '广东省深圳市龙华区深圳北站')

Uibot函数:

// 由于通过uibot的python调用存在问题(import cpca始终报错), 所以通过命令行调用
// python路径直接写在tools.bat中, 使用系统where python给出的路径, 避免uibot调用错误的python版本. 此时在系统中使用Pip安装的库可以直接在这儿使用
// tools.bat直接调用执行tools.py. 具体函数在tools.py中实现
// 以Json字符串形式返回
Function PyTools(func, params)
    // params支持单字符串的单参数或者数组形式的多参数
    Dim Ret
    If type('params') = 'string'
        Ret = Sys.Command(@res"tools.bat "+func+" "+params)
    else
        Dim cmd = @res"tools.bat "+func
        For Each p In params 
            cmd = cmd + " " + p
        Next
        Ret = Sys.Command(@res"tools.bat "+func+cmd)
    End if 
    return JSON.Parse(Ret)
End Function

系统命令 tools.bat和python脚本tools.py, 放在uibot项目的res目录下. 如果不放心调用哪个版本的python,可以积极在python前面加路径.

@echo off
python.exe D:\folder\to\project\res\tools.py %1 %2 %3 %4 %5 %6 %7 %8 %9
@echo on

tool.py部分. 大多数是gpt4写的

# tools.py

import sys,re,json
import cpca

def parse_address(address):
    a = ""
    a1 = parse_address1(address)
    a2 = parse_address2(address)
    # 策略: 长度相同优选a1方法, 否则选a2
    if len(a2) <= len(a1):
        a = a1
    else:
        a = a2
    # return f"{a[0]}|{a[1]}|{a[2]}"
    return json.dumps(a, ensure_ascii=False)

# 采用cpca获取省市区. 好处: 不写省市区这几个字都能识别. 问题: 可能有数据库过期问题(龙华区无法识别)
def parse_address1(address):
    # 使用 cpca 库解析地址并返回 DataFrame
    df = cpca.transform([address])
    location = df.iloc[0]  # 提取第一行数据,即我们需要的地址解析结果

    # 返回省市区字符串,用 "|" 分隔
    # return f"{location['省']}|{location['市']}|{location['区']}"
    return list(filter(None,[location['省'], location['市'], location['区']]))

# 采用正则表达式获取省市区. 好处: 不需要更新数据库. 问题: 必须有省市区这几个字.
def parse_address2(address):
    # 更新省/直辖市的匹配模式以处理没有“市”字的直辖市情况
    pattern = re.compile(
        r'(?P<province>[^省]+省|[^自治区]+自治区|北京|天津|上海|重庆)?'
        r'(?P<city>[^市]+市|[^自治州]+自治州|[^地区]+地区|[^盟]+盟)?'
        r'(?P<district>[^县]+县|[^区]+区|[^旗]+旗|[^自治县]+自治县|[^林区]+林区|[^特别行政区]+特别行政区)?'
    )
    match = pattern.search(address)
    if not match:
        return "无法提取地址信息"

    province, city, district = match.group('province', 'city', 'district')

    # 北京、天津、上海和重庆作为直辖市,如果匹配到省份但没有匹配到市,将省份的名字赋给城市
    if province in ['北京', '天津', '上海', '重庆'] and not city:
        city = province
        city = city + '市'

    # 如果没有匹配到,则用空字符串代替
    province = province if province else ''
    city = city if city else ''
    district = district if district else ''

    # 以"|"连接非空字符串
    # result = '|'.join(filter(None, [province, city, district]))

    return list(filter(None,[province, city, district]))

def test_parse_address():
    print(parse_address('广东省深圳市龙华区深圳北站'))


if __name__ == "__main__":
    if len(sys.argv) < 3:
        print("Usage: python tools.py parse_address 'Your Address String Here'")
        sys.exit(1)
    if sys.argv[1] == "parse_address":
        input_address = sys.argv[2]
        result = parse_address(input_address)
        print(result)
    elif sys.argv[1] == "test_parse_address":
        test_parse_address()
    else:
        print('["没有正确的函数名"]')

我: 请数据一个bat文件,可以接受一组参数. 参数为ot时, 将使用ssh命令登录到192.168.1.105端口8022上, 参数为om时, 将使用ssh命令登录到192.168.0.31端口8022上

GPT: 以下是一个能够接受参数的批处理文件的示例:


@echo off

REM 检查传入的参数
IF "%1"=="ot" (
REM 执行连接到192.168.1.105:8022的ssh命令
ssh user@192.168.1.105 -p 8022
) ELSE IF "%1"=="om" (
REM 执行连接到192.168.0.31:8022的ssh命令
ssh user@192.168.0.31 -p 8022
) ELSE (
REM 未提供有效参数时显示帮助信息
echo 请提供有效参数(ot 或 om)
)

REM 结束批处理文件
exit /b


> 请注意,上面的示例假设已经安装了ssh客户端,并且可以通过命令ssh来进行远程登录。

实际运行一次性成功

参考: 2024,像极了1929

这篇文章作者至少在一开始提出了2个真实的、不忽悠人的看法:一是绝大多数人成功自以为是实力实际上是运气;二是在运气产生的时候坚决地迈出去。不靠运气而能洞察未来的人不是没有而是很少。
所以这儿虽说是洞察,也只能把握大趋势,具体到适合个人的小方向上,只能提高好运气的概率。
文中2点和我想的也类似。其一是GPT之类的人工智能是新变革的起点,以后会变成日常生活的一部分,从现在开始在日常中应该更多应用AI;其二是中国尤其是深圳有制造业的优势,在全球都是最好的,如果不加利用非常可惜。
文中对AI有个观点,就是需要与各行各业深入结合,变成“蒸汽机”,深刻提高效率以至于创造力。
文中对中国制造业有两个值得注意的观点:制造业不应像美国一样完全外流,在扩展到海外的同时,而应在国内同时保留一份;另一个是世界级的领导者企业应该、也必然更多在中国产生,也就是更多颠覆者,而不仅仅都是跟随者。我倒是认为颠覆者已经渐渐产生,至是不够深入和全面。目前主要是在互联网领域,比如字节的Tiktok是世界首创的短视频平台、腾讯的微信也让马斯克的X模仿。为什么?因为这个领域进入成本低,一个人有一台电脑就搞定了,创新速度也就更快。字节可以说是靠今日头条积累原始资本,靠抖音发财成为全球现象级产品。对于制造业的个人创新,以前门槛是比美国人高很多的。美国人都有个车库,里面钉锤斧钻样样俱全,从小再这样的环境中长大的人,很容易在鼓捣出些创新硬件产品。中国都住在鸽子楼里缺少这样的环境,然而近年B站不少UP主也利用家里环境和1688的便捷采购鼓捣出不少新玩意。再加上很多硬件设计可以通过电脑完成,如果加上AI的助力,是否能形成一波硬件产品创新的浪潮,就像美国发明了电灯泡洗衣机,日本让磁带、Walkman、游戏机走入每个家庭一样。
现在AI的问题有以下几个,在解决以后,会形成很大助力(我相信近几年会很快解决):

  • 缺少大量的人工信息导入和分析能力。比如AI和爬虫结合, 通过爬虫给AI导入大量的信息, 让AI对解决方案中的原料进行快速寻找、匹配,甚至对解决方案进行自动优化
  • 缺少通用的图片分析能力。根据图片分析产品的尺寸、材质、重量、结构、功能等是否适用。
  • 缺乏数学和逻辑推理能力。
  • 缺乏复杂的编程和自我DEBUG验证能力。
  • 缺乏工程设计图、矢量图、3D图的阅读和编辑能力。比如可以自编辑STEP文件、SVG文件、STL文件等。现在的AI能力主要是位图能力。
  • 事实上其他文档的生成能力也还很初级,比如xlsx等。
    这些方面应该会在近几年快速补齐。有的是AI能力已经足够,只是缺少对应的应用,有的还需要AI本身去提升能力。

希望做一个功能, 通过收集表收集的数据在处理完成后删除掉. 哪种删除方式最方便有效

1. 直接删除统计表: 失败

直接删除统计excel表后, 点击在表格中查看按钮, 会显示表格已经删除, 而且新建相同名称的表格也不能恢复

2. sheet重命名: 失败

重命名sheet后, 仍然在重命名后的sheet中添加数据, 并不能新建sheet添加新数据

3. 在搜集表-统计-已填写-三个点, 一个一个点击移除 : 成功50%

确实可以从统计表sheet中移除数据, 那一行会变成「已移除」, 但是这一行依然存在, 新数据不会覆盖这一行

4. 直接删除统计表数据行: 成功100%

删除数据行后, 新的数据会从新的一行开始

5. 删除sheet后重新关联统计表: 失败

删除sheet后, 可以点击统计表右上角三条杠菜单, 选择'关联的内容', 然后选择对应的收集表, 此时会新建一个收集表同名sheet, 如果已有同名sheet则在名称后面加(1), 而且, 此时会把过往删除的所有收集表信息统统恢复出来.